Source code for stouputils.data_science.data_processing.image.contrast


# Imports
from .common import Any, NDArray, check_image, cv2, np


# Functions
[docs] def contrast_image(image: NDArray[Any], factor: float, ignore_dtype: bool = False) -> NDArray[Any]: """ Adjust the contrast of an image. Args: image (NDArray[Any]): Image to adjust contrast factor (float): Contrast adjustment factor ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Image with adjusted contrast >>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> contrasted = contrast_image(image.astype(np.uint8), 1.5) >>> contrasted.shape == image.shape True >>> img = np.array([[50, 100, 150]], dtype=np.uint8) >>> high = contrast_image(img, 2.0) >>> low = contrast_image(img, 0.5) >>> bool(high.std() > img.std() > low.std()) # Higher contrast = higher std True >>> rgb = np.full((3,3,3), 128, dtype=np.uint8) >>> rgb[1,1] = [50, 100, 150] >>> cont_rgb = contrast_image(rgb, 1.5) >>> cont_rgb.shape == (3,3,3) True >>> ## Test invalid inputs >>> contrast_image("not an image", 1.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> contrast_image(image.astype(np.uint8), "1.5") Traceback (most recent call last): ... AssertionError: factor must be a number, got <class 'str'> """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert isinstance(factor, float | int), f"factor must be a number, got {type(factor)}" # Apply contrast adjustment mean: float = float(np.mean(image)) return cv2.addWeighted(image, factor, image, 0, mean * (1 - factor))