Source code for stouputils.data_science.data_processing.image.laplacian


# pyright: reportUnknownMemberType=false
# pyright: reportUnknownVariableType=false
# pyright: reportUnknownArgumentType=false
# pyright: reportAttributeAccessIssue=false
# pyright: reportArgumentType=false
# pyright: reportCallIssue=false

# Imports
from .common import Any, NDArray, check_image, cv2, np


# Functions
[docs] def laplacian_image(image: NDArray[Any], kernel_size: int = 3, ignore_dtype: bool = False) -> NDArray[Any]: """ Apply Laplacian edge detection to an image. Args: image (NDArray[Any]): Image to apply Laplacian edge detection kernel_size (int): Size of the kernel (must be odd) ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Image with Laplacian edge detection applied >>> ## Basic tests >>> image = np.array([[100, 150, 200], [50, 125, 175], [25, 75, 225]]) >>> edges = laplacian_image(image.astype(np.uint8)) >>> edges.shape == image.shape[:2] # Laplacian returns single channel True >>> rgb = np.random.randint(0, 256, (3,3,3), dtype=np.uint8) >>> edges_rgb = laplacian_image(rgb) >>> edges_rgb.shape == rgb.shape[:2] # Laplacian returns single channel True >>> ## Test invalid inputs >>> laplacian_image("not an image") Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> laplacian_image(image.astype(np.uint8), kernel_size=2) Traceback (most recent call last): ... AssertionError: kernel_size must be odd, got 2 """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert kernel_size % 2 == 1, f"kernel_size must be odd, got {kernel_size}" # Convert to grayscale if needed if len(image.shape) > 2: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply Laplacian edge detection laplacian: NDArray[Any] = cv2.Laplacian(image, cv2.CV_64F, ksize=kernel_size) # Convert back to uint8 and normalize to 0-255 range normalized: NDArray[Any] = cv2.normalize(laplacian, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) return normalized.astype(np.uint8)