Source code for stouputils.data_science.data_processing.image.binary_threshold


# pyright: reportUnusedImport=false
# ruff: noqa: F401

# Imports
from .common import Any, NDArray, check_image, cv2, np


# Functions
[docs] def binary_threshold_image(image: NDArray[Any], threshold: float, ignore_dtype: bool = False) -> NDArray[Any]: """ Apply binary threshold to an image. Args: image (NDArray[Any]): Image to threshold threshold (float): Threshold value (between 0 and 1) ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Thresholded binary image >>> ## Basic tests >>> image = np.array([[100, 150, 200], [50, 125, 175], [25, 75, 225]]) >>> binary_threshold_image(image.astype(np.uint8), 0.5).tolist() [[0, 255, 255], [0, 0, 255], [0, 0, 255]] >>> np.random.seed(42) >>> img = np.random.randint(0, 256, (4,4), dtype=np.uint8) >>> thresholded = binary_threshold_image(img, 0.7) >>> set(np.unique(thresholded).tolist()) <= {0, 255} # Should only contain 0 and 255 True >>> rgb = np.random.randint(0, 256, (3,3,3), dtype=np.uint8) >>> thresh_rgb = binary_threshold_image(rgb, 0.5) >>> thresh_rgb.shape == rgb.shape True >>> set(np.unique(thresh_rgb).tolist()) <= {0, 255} True >>> ## Test invalid inputs >>> binary_threshold_image("not an image", 0.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> binary_threshold_image(image.astype(np.uint8), "0.5") Traceback (most recent call last): ... AssertionError: threshold must be a number, got <class 'str'> >>> binary_threshold_image(image.astype(np.uint8), 1.5) Traceback (most recent call last): ... AssertionError: threshold must be between 0 and 1, got 1.5 """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert isinstance(threshold, float | int), f"threshold must be a number, got {type(threshold)}" assert 0 <= threshold <= 1, f"threshold must be between 0 and 1, got {threshold}" # Convert threshold from 0-1 range to 0-255 range threshold_value: int = int(threshold * 255) # Apply threshold if len(image.shape) == 2: # Grayscale image binary: NDArray[Any] = cv2.threshold(image, threshold_value, 255, cv2.THRESH_BINARY)[1] else: # Color image - convert to grayscale first, then back to color gray: NDArray[Any] = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) binary: NDArray[Any] = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY)[1] binary = cv2.cvtColor(binary, cv2.COLOR_GRAY2BGR) return binary