Source code for stouputils.image
# Imports
from collections.abc import Callable
from typing import Any
import numpy as np
from PIL import Image
# Functions
[docs]
def image_resize(
image: Image.Image | np.ndarray[Any, np.dtype[np.uint8]],
max_result_size: int,
resampling: Image.Resampling = Image.Resampling.LANCZOS,
min_or_max: Callable[[int, int], int] = max,
return_type: type[Image.Image | np.ndarray[Any, np.dtype[np.uint8]]] = Image.Image,
keep_aspect_ratio: bool = True,
) -> Any:
""" Resize an image while preserving its aspect ratio by default.
Scales the image so that its largest dimension equals max_result_size.
Args:
image (Image.Image | np.ndarray): The image to resize.
max_result_size (int): Maximum size for the largest dimension.
resampling (Image.Resampling): PIL resampling filter to use.
min_or_max (Callable): Function to use to get the minimum or maximum of the two ratios.
return_type (type): Type of the return value (Image.Image or np.ndarray).
keep_aspect_ratio (bool): Whether to keep the aspect ratio.
Returns:
Image.Image | np.ndarray[Any, np.dtype[np.uint8]]: The resized image with preserved aspect ratio.
Examples:
>>> # Test with (height x width x channels) numpy array
>>> import numpy as np
>>> array: np.ndarray = np.random.randint(0, 255, (100, 50, 3), dtype=np.uint8)
>>> image_resize(array, 100).size
(50, 100)
>>> image_resize(array, 100, min_or_max=max).size
(50, 100)
>>> image_resize(array, 100, min_or_max=min).size
(100, 200)
>>> # Test with PIL Image
>>> from PIL import Image
>>> pil_image: Image.Image = Image.new('RGB', (200, 100))
>>> image_resize(pil_image, 50).size
(50, 25)
>>> # Test with different return types
>>> resized_array = image_resize(array, 50, return_type=np.ndarray)
>>> isinstance(resized_array, np.ndarray)
True
>>> resized_array.shape
(50, 25, 3)
>>> # Test with different resampling methods
>>> image_resize(pil_image, 50, resampling=Image.Resampling.NEAREST).size
(50, 25)
"""
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if keep_aspect_ratio:
# Get original image dimensions
width: int = image.size[0]
height: int = image.size[1]
# Determine which dimension to use for scaling based on min_or_max function
max_dimension: int = min_or_max(width, height)
# Calculate scaling factor
scale: float = max_result_size / max_dimension
# Calculate new dimensions while preserving aspect ratio
new_width: int = int(width * scale)
new_height: int = int(height * scale)
# Resize the image with the calculated dimensions
new_image: Image.Image = image.resize((new_width, new_height), resampling)
else:
# If not keeping aspect ratio, resize to square with max_result_size
new_image: Image.Image = image.resize((max_result_size, max_result_size), resampling)
# Return the image in the requested format
if return_type == np.ndarray:
return np.array(new_image)
else:
return new_image