Source code for stouputils.data_science.data_processing.image.noise


# Imports
from .common import Any, NDArray, check_image, np


# Functions
[docs] def noise_image(image: NDArray[Any], amount: float, ignore_dtype: bool = False) -> NDArray[Any]: """ Add Gaussian noise to an image. Args: image (NDArray[Any]): Image to add noise to amount (float): Amount of noise to add (between 0 and 1) ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Noisy image >>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> noisy = noise_image(image.astype(np.uint8), 0.5) >>> noisy.shape == image.shape True >>> bool(np.all(noisy >= 0) and np.all(noisy <= 255)) True >>> np.random.seed(0) >>> image = np.array([[128] * 3] * 3) >>> noise_image(image.astype(np.uint8), 0.1).tolist() [[172, 138, 152], [185, 175, 104], [152, 125, 126]] >>> rgb = np.full((3,3,3), 128, dtype=np.uint8) >>> noisy_rgb = noise_image(rgb, 0.1) >>> noisy_rgb.shape == (3,3,3) True >>> ## Test invalid inputs >>> noise_image("not an image", 0.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> noise_image(image.astype(np.uint8), "0.5") Traceback (most recent call last): ... AssertionError: amount must be a number, got <class 'str'> >>> noise_image(image.astype(np.uint8), 1.5) Traceback (most recent call last): ... AssertionError: amount must be between 0 and 1, got 1.5 """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert isinstance(amount, float | int), f"amount must be a number, got {type(amount)}" assert 0 <= amount <= 1, f"amount must be between 0 and 1, got {amount}" # Generate noise noise: NDArray[Any] = np.random.normal(0, amount * 255, image.shape).astype(np.int16) return np.clip(image.astype(np.int16) + noise, 0, 255).astype(image.dtype) # pyright: ignore [reportUnknownMemberType]