stouputils.data_science.data_processing.image.blur module#
- blur_image(image: ndarray[Any, dtype[Any]], blur_strength: float, ignore_dtype: bool = False) ndarray[Any, dtype[Any]] [source]#
Apply Gaussian blur to an image.
- Parameters:
image (NDArray[Any]) – Image to blur
blur_strength (float) – Strength of the blur
ignore_dtype (bool) – Ignore the dtype check
- Returns:
Blurred image
- Return type:
NDArray[Any]
>>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> blurred = blur_image(image.astype(np.uint8), 1.5) >>> blurred.shape == image.shape True
>>> img = np.zeros((5,5), dtype=np.uint8) >>> img[2,2] = 255 # Single bright pixel >>> blurred = blur_image(img, 1.0) >>> bool(blurred[2,2] < 255) # Center should be blurred True
>>> rgb = np.full((3,3,3), 128, dtype=np.uint8) >>> blurred_rgb = blur_image(rgb, 1.0) >>> blurred_rgb.shape == (3,3,3) True
>>> ## Test invalid inputs >>> blur_image("not an image", 1.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array
>>> blur_image(image.astype(np.uint8), "1.5") Traceback (most recent call last): ... AssertionError: blur_strength must be a number, got <class 'str'>