stouputils.data_science.dataset.dataset module#
This module contains the Dataset class, which provides an easy way to handle ML datasets.
The Dataset class has the following attributes:
training_data (XyTuple): Training data containing features, labels and file paths
test_data (XyTuple): Test data containing features, labels and file paths
num_classes (int): Number of classes in the dataset
name (str): Name of the dataset
grouping_strategy (GroupingStrategy): Strategy for grouping images when loading
labels (list[str]): List of class labels (strings)
loading_type (Literal[“image”]): Type of the dataset (currently only “image” is supported)
original_dataset (Dataset | None): Original dataset used for data augmentation
class_distribution (dict[str, dict]): Class distribution counts for train/test sets
It provides methods for:
Loading image datasets from directories using different grouping strategies
Splitting data into train/test sets with stratification (and care for data augmentation)
Managing class distributions and dataset metadata
- DEFAULT_IMAGE_KWARGS: dict[str, Any] = {'batch_size': 1, 'color_mode': 'rgb', 'image_size': (224, 224), 'label_mode': 'categorical'}#
Default image kwargs sent to keras.image_dataset_from_directory
- class Dataset(training_data: XyTuple | list[Any], val_data: XyTuple | list[Any] | None = None, test_data: XyTuple | list[Any] | None = None, name: str = '', grouping_strategy: GroupingStrategy = GroupingStrategy.NONE, labels: tuple[str, ...] = (), loading_type: Literal['image'] = 'image')[source]#
Bases:
object
Dataset class used for easy data handling.
- _training_data: XyTuple#
Training data as XyTuple containing X and y as numpy arrays. This is a protected attribute accessed via the public property self.training_data.
- _val_data: XyTuple#
Validation data as XyTuple containing X and y as numpy arrays. This is a protected attribute accessed via the public property self.val_data.
- _test_data: XyTuple#
Test data as XyTuple containing X and y as numpy arrays. This is a protected attribute accessed via the public property self.test_data.
- num_classes: int#
Number of classes in the dataset (y)
- name: str#
Name of the dataset (path given in the constructor are converted, ex: “…/data/pizza_not_pizza” becomes “pizza_not_pizza”)
- loading_type: Literal['image']#
Type of the dataset
- grouping_strategy: GroupingStrategy#
Grouping strategy for the dataset
- labels: tuple[str, ...]#
List of class labels (strings)
- class_distribution: dict[str, dict[int, int]]#
Class distribution in the dataset for both training and test sets
- _get_num_classes(*values: Any) int [source]#
Get the number of classes in the dataset.
- Parameters:
values (NDArray[Any]) – Arrays containing class labels
- Returns:
Number of unique classes
- Return type:
int
- _update_class_distribution(update_num_classes: bool = False) None [source]#
Update the class distribution dictionary for both training and test data.
- exclude_augmented_images_from_val_test(original_dataset: Dataset) None [source]#
Exclude augmented versions of validation and test images from the training set.
This ensures that augmented versions of images in the validation and test sets are not present in the training set, which would cause data leakage.
- Parameters:
original_dataset (Dataset) – The original dataset containing the test images to exclude