Source code for stouputils.data_science.data_processing.image.salt_pepper
# Imports
from .common import Any, NDArray, check_image, np
# Functions
[docs]
def salt_pepper_image(image: NDArray[Any], density: float, ignore_dtype: bool = False) -> NDArray[Any]:
""" Add salt and pepper noise to an image.
Args:
image (NDArray[Any]): Image to add noise to
density (float): Density of the noise (between 0 and 1)
ignore_dtype (bool): Ignore the dtype check
Returns:
NDArray[Any]: Image with salt and pepper noise
>>> ## Basic tests
>>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> noisy = salt_pepper_image(image.astype(np.uint8), 0.1)
>>> noisy.shape == image.shape
True
>>> np.random.seed(42)
>>> img = np.full((4,4), 128, dtype=np.uint8)
>>> noisy = salt_pepper_image(img, 1.0)
>>> sorted(np.unique(noisy).tolist()) # Should only contain 0 and 255
[0, 255]
>>> rgb = np.full((3,3,3), 128, dtype=np.uint8)
>>> noisy_rgb = salt_pepper_image(rgb, 0.1)
>>> noisy_rgb.shape == (3,3,3)
True
>>> ## Test invalid inputs
>>> salt_pepper_image("not an image", 0.1)
Traceback (most recent call last):
...
AssertionError: Image must be a numpy array
>>> salt_pepper_image(image.astype(np.uint8), "0.1")
Traceback (most recent call last):
...
AssertionError: density must be a number, got <class 'str'>
>>> salt_pepper_image(image.astype(np.uint8), 1.5)
Traceback (most recent call last):
...
AssertionError: density must be between 0 and 1, got 1.5
"""
# Check input data
check_image(image, ignore_dtype=ignore_dtype)
assert isinstance(density, float | int), f"density must be a number, got {type(density)}"
assert 0 <= density <= 1, f"density must be between 0 and 1, got {density}"
# Create a mask of the same shape as the input image
mask: NDArray[Any] = np.random.choice( # pyright: ignore [reportUnknownMemberType]
[0, 1, 2],
size=image.shape,
p=[1-density, density/2, density/2],
)
# Apply the mask to the input image
noisy_image: NDArray[Any] = image.copy()
noisy_image[mask == 1] = 0 # Pepper noise
noisy_image[mask == 2] = 255 # Salt noise
return noisy_image