Source code for stouputils.data_science.data_processing.image.random_erase


# pyright: reportUnknownMemberType=false

# Imports
from .common import Any, NDArray, check_image, np


# Functions
[docs] def random_erase_image(image: NDArray[Any], erase_factor: float, ignore_dtype: bool = False) -> NDArray[Any]: """ Randomly erase a rectangle in the image. Args: image (NDArray[Any]): Image to apply random erase erase_factor (float): Factor determining the size of the rectangle to erase ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Image with random erasing applied >>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> erased = random_erase_image(image.astype(np.uint8), 0.5) >>> erased.shape == image.shape True >>> np.random.seed(42) >>> img = np.ones((5,5), dtype=np.uint8) * 255 >>> erased = random_erase_image(img, 0.4) >>> bool(np.any(erased == 0)) # Should have some erased pixels True >>> rgb = np.full((3,3,3), 128, dtype=np.uint8) >>> erased_rgb = random_erase_image(rgb, 0.3) >>> erased_rgb.shape == (3,3,3) True >>> ## Test invalid inputs >>> random_erase_image("not an image", 0.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> random_erase_image(image.astype(np.uint8), "0.5") Traceback (most recent call last): ... AssertionError: erase_factor must be a number, got <class 'str'> """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert isinstance(erase_factor, float | int), f"erase_factor must be a number, got {type(erase_factor)}" # Get image dimensions height, width = image.shape[:2] # Determine size of the rectangle to erase erase_height: int = int(height * erase_factor) erase_width: int = int(width * erase_factor) # Randomly choose the top-left corner of the rectangle top_left_x: int = np.random.randint(0, width - erase_width) top_left_y: int = np.random.randint(0, height - erase_height) # Apply random erasing erased_image: NDArray[Any] = image.copy() erased_image[top_left_y:top_left_y + erase_height, top_left_x:top_left_x + erase_width] = 0 return erased_image