stouputils.data_science.data_processing.image.canny module#
- canny_image(image: ndarray[Any, dtype[Any]], threshold1: float, threshold2: float, aperture_size: int = 3, sigma: float = 3, stop_at_nms: bool = False, ignore_dtype: bool = False) ndarray[Any, dtype[Any]] [source]#
Apply Canny edge detection to an image.
- Parameters:
image (NDArray[Any]) – Image to apply Canny edge detection
threshold1 (float) – First threshold for hysteresis (between 0 and 1)
threshold2 (float) – Second threshold for hysteresis (between 0 and 1)
aperture_size (int) – Aperture size for Sobel operator (3, 5, or 7)
sigma (float) – Standard deviation for Gaussian blur
stop_at_nms (bool) – Stop at non-maximum suppression step (don’t apply thresholding)
ignore_dtype (bool) – Ignore the dtype check
- Returns:
Image with Canny edge detection applied
- Return type:
NDArray[Any]
>>> ## Basic tests >>> image = np.array([[100, 150, 200], [50, 125, 175], [25, 75, 225]]) >>> edges = canny_image(image.astype(np.uint8), 0.1, 0.2) >>> edges.shape == image.shape[:2] # Canny returns single channel True >>> set(np.unique(edges).tolist()) <= {0, 255} # Only contains 0 and 255 True
>>> rgb = np.random.randint(0, 256, (3,3,3), dtype=np.uint8) >>> edges_rgb = canny_image(rgb, 0.1, 0.2) >>> edges_rgb.shape == rgb.shape[:2] # Canny returns single channel True
>>> ## Test invalid inputs >>> canny_image("not an image", 0.1, 0.2) Traceback (most recent call last): ... AssertionError: Image must be a numpy array
>>> canny_image(image.astype(np.uint8), 1.5, 0.2) Traceback (most recent call last): ... AssertionError: threshold1 must be between 0 and 1, got 1.5