Source code for stouputils.data_science.data_processing.image.blur
# pyright: reportUnusedImport=false
# ruff: noqa: F401
# Imports
from .common import Any, NDArray, check_image, cv2, np
# Functions
[docs]
def blur_image(image: NDArray[Any], blur_strength: float, ignore_dtype: bool = False) -> NDArray[Any]:
""" Apply Gaussian blur to an image.
Args:
image (NDArray[Any]): Image to blur
blur_strength (float): Strength of the blur
ignore_dtype (bool): Ignore the dtype check
Returns:
NDArray[Any]: Blurred image
>>> ## Basic tests
>>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> blurred = blur_image(image.astype(np.uint8), 1.5)
>>> blurred.shape == image.shape
True
>>> img = np.zeros((5,5), dtype=np.uint8)
>>> img[2,2] = 255 # Single bright pixel
>>> blurred = blur_image(img, 1.0)
>>> bool(blurred[2,2] < 255) # Center should be blurred
True
>>> rgb = np.full((3,3,3), 128, dtype=np.uint8)
>>> blurred_rgb = blur_image(rgb, 1.0)
>>> blurred_rgb.shape == (3,3,3)
True
>>> ## Test invalid inputs
>>> blur_image("not an image", 1.5)
Traceback (most recent call last):
...
AssertionError: Image must be a numpy array
>>> blur_image(image.astype(np.uint8), "1.5")
Traceback (most recent call last):
...
AssertionError: blur_strength must be a number, got <class 'str'>
"""
# Check input data
check_image(image, ignore_dtype=ignore_dtype)
assert isinstance(blur_strength, float | int), f"blur_strength must be a number, got {type(blur_strength)}"
# Apply Gaussian blur
kernel_size: int = max(3, int(blur_strength * 2) + 1)
if kernel_size % 2 == 0:
kernel_size += 1
blurred_image: NDArray[Any] = cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
return blurred_image