Source code for stouputils.data_science.data_processing.image.zoom


# pyright: reportUnusedImport=false
# ruff: noqa: F401

# Imports
from .common import Any, NDArray, check_image, cv2, np


# Functions
[docs] def zoom_image(image: NDArray[Any], zoom_factor: float, ignore_dtype: bool = False) -> NDArray[Any]: """ Zoom into an image. Args: image (NDArray[Any]): Image to zoom zoom_factor (float): Zoom factor (greater than 1 for zoom in, less than 1 for zoom out) ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Zoomed image >>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> zoomed = zoom_image(image.astype(np.uint8), 1.5) >>> zoomed.shape == image.shape True >>> img = np.eye(4, dtype=np.uint8) * 255 >>> zoomed_in = zoom_image(img, 2.0) >>> zoomed_in.shape == img.shape # Should preserve size True >>> zoomed_out = zoom_image(img, 0.5) >>> zoomed_out.shape == img.shape # Should preserve size True >>> rgb = np.full((4,4,3), 128, dtype=np.uint8) >>> zoomed_rgb = zoom_image(rgb, 1.5) >>> zoomed_rgb.shape == (4,4,3) True >>> ## Test invalid inputs >>> zoom_image("not an image", 1.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> zoom_image(image.astype(np.uint8), "1.5") Traceback (most recent call last): ... AssertionError: zoom_factor must be a number, got <class 'str'> >>> zoom_image(image.astype(np.uint8), -1) Traceback (most recent call last): ... AssertionError: zoom_factor must be greater than 0, got -1 """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert isinstance(zoom_factor, float | int), f"zoom_factor must be a number, got {type(zoom_factor)}" assert zoom_factor > 0, f"zoom_factor must be greater than 0, got {zoom_factor}" # Get image dimensions height, width = image.shape[:2] # Calculate new dimensions new_height, new_width = int(height * zoom_factor), int(width * zoom_factor) # Resize image zoomed_image: NDArray[Any] = cv2.resize(image, (new_width, new_height)) # Crop or pad to original size if zoom_factor > 1: # Crop start_x: int = (new_width - width) // 2 start_y: int = (new_height - height) // 2 return zoomed_image[start_y:start_y + height, start_x:start_x + width] # pyright: ignore [reportUnknownVariableType] else: # Pad pad_x: int = (width - new_width) // 2 pad_y: int = (height - new_height) // 2 # Ensure value list matches number of channels (max 4 for OpenCV) value: list[int] = [0] * min(image.shape[-1], 4) return cv2.copyMakeBorder(zoomed_image, pad_y, pad_y, pad_x, pad_x, cv2.BORDER_CONSTANT, value=value)