Source code for stouputils.data_science.data_processing.image.sharpening


# pyright: reportUnusedImport=false
# ruff: noqa: F401

# Imports
from .common import Any, NDArray, check_image, cv2, np


# Functions
[docs] def sharpen_image(image: NDArray[Any], alpha: float, ignore_dtype: bool = False) -> NDArray[Any]: """ Sharpen an image. Args: image (NDArray[Any]): Image to sharpen alpha (float): Sharpening factor ignore_dtype (bool): Ignore the dtype check Returns: NDArray[Any]: Sharpened image >>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> sharpened = sharpen_image(image.astype(np.uint8), 1.5) >>> sharpened.shape == image.shape True >>> img = np.full((5,5), 128, dtype=np.uint8) >>> img[2,2] = 255 # Center bright pixel >>> sharp = sharpen_image(img, 1.0) >>> bool(sharp[2,2] > img[2,2] * 0.9) # Center should stay bright True >>> rgb = np.full((3,3,3), 128, dtype=np.uint8) >>> sharp_rgb = sharpen_image(rgb, 1.0) >>> sharp_rgb.shape == (3,3,3) True >>> ## Test invalid inputs >>> sharpen_image("not an image", 1.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array >>> sharpen_image(image.astype(np.uint8), "1.5") Traceback (most recent call last): ... AssertionError: alpha must be a number, got <class 'str'> """ # Check input data check_image(image, ignore_dtype=ignore_dtype) assert isinstance(alpha, float | int), f"alpha must be a number, got {type(alpha)}" # Apply sharpening blurred: NDArray[Any] = cv2.GaussianBlur(image, (0, 0), 3) return cv2.addWeighted(image, 1 + alpha, blurred, -alpha, 0)