Source code for stouputils.data_science.data_processing.image.random_erase
# pyright: reportUnknownMemberType=false
# Imports
from .common import Any, NDArray, check_image, np
# Functions
[docs]
def random_erase_image(image: NDArray[Any], erase_factor: float, ignore_dtype: bool = False) -> NDArray[Any]:
""" Randomly erase a rectangle in the image.
Args:
image (NDArray[Any]): Image to apply random erase
erase_factor (float): Factor determining the size of the rectangle to erase
ignore_dtype (bool): Ignore the dtype check
Returns:
NDArray[Any]: Image with random erasing applied
>>> ## Basic tests
>>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> erased = random_erase_image(image.astype(np.uint8), 0.5)
>>> erased.shape == image.shape
True
>>> np.random.seed(42)
>>> img = np.ones((5,5), dtype=np.uint8) * 255
>>> erased = random_erase_image(img, 0.4)
>>> bool(np.any(erased == 0)) # Should have some erased pixels
True
>>> rgb = np.full((3,3,3), 128, dtype=np.uint8)
>>> erased_rgb = random_erase_image(rgb, 0.3)
>>> erased_rgb.shape == (3,3,3)
True
>>> ## Test invalid inputs
>>> random_erase_image("not an image", 0.5)
Traceback (most recent call last):
...
AssertionError: Image must be a numpy array
>>> random_erase_image(image.astype(np.uint8), "0.5")
Traceback (most recent call last):
...
AssertionError: erase_factor must be a number, got <class 'str'>
"""
# Check input data
check_image(image, ignore_dtype=ignore_dtype)
assert isinstance(erase_factor, float | int), f"erase_factor must be a number, got {type(erase_factor)}"
# Get image dimensions
height, width = image.shape[:2]
# Determine size of the rectangle to erase
erase_height: int = int(height * erase_factor)
erase_width: int = int(width * erase_factor)
# Randomly choose the top-left corner of the rectangle
top_left_x: int = np.random.randint(0, width - erase_width)
top_left_y: int = np.random.randint(0, height - erase_height)
# Apply random erasing
erased_image: NDArray[Any] = image.copy()
erased_image[top_left_y:top_left_y + erase_height, top_left_x:top_left_x + erase_width] = 0
return erased_image