stouputils.data_science.data_processing.image.random_erase module#
- random_erase_image(image: ndarray[Any, dtype[Any]], erase_factor: float, ignore_dtype: bool = False) ndarray[Any, dtype[Any]] [source]#
Randomly erase a rectangle in the image.
- Parameters:
image (NDArray[Any]) – Image to apply random erase
erase_factor (float) – Factor determining the size of the rectangle to erase
ignore_dtype (bool) – Ignore the dtype check
- Returns:
Image with random erasing applied
- Return type:
NDArray[Any]
>>> ## Basic tests >>> image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> erased = random_erase_image(image.astype(np.uint8), 0.5) >>> erased.shape == image.shape True
>>> np.random.seed(42) >>> img = np.ones((5,5), dtype=np.uint8) * 255 >>> erased = random_erase_image(img, 0.4) >>> bool(np.any(erased == 0)) # Should have some erased pixels True
>>> rgb = np.full((3,3,3), 128, dtype=np.uint8) >>> erased_rgb = random_erase_image(rgb, 0.3) >>> erased_rgb.shape == (3,3,3) True
>>> ## Test invalid inputs >>> random_erase_image("not an image", 0.5) Traceback (most recent call last): ... AssertionError: Image must be a numpy array
>>> random_erase_image(image.astype(np.uint8), "0.5") Traceback (most recent call last): ... AssertionError: erase_factor must be a number, got <class 'str'>