stouputils.image module¶
- image_resize(image: ~PIL.Image.Image | ~numpy.ndarray[~typing.Any, ~numpy.dtype[~numpy.uint8]], max_result_size: int, resampling: ~PIL.Image.Resampling = Resampling.LANCZOS, min_or_max: ~typing.Callable[[int, int], int] = <built-in function max>, return_type: type[~PIL.Image.Image | ~numpy.ndarray[~typing.Any, ~numpy.dtype[~numpy.uint8]]] = <class 'PIL.Image.Image'>, keep_aspect_ratio: bool = True) Any [source]¶
Resize an image while preserving its aspect ratio by default. Scales the image so that its largest dimension equals max_result_size.
- Parameters:
image (Image.Image | np.ndarray) – The image to resize.
max_result_size (int) – Maximum size for the largest dimension.
resampling (Image.Resampling) – PIL resampling filter to use.
min_or_max (Callable) – Function to use to get the minimum or maximum of the two ratios.
return_type (type) – Type of the return value (Image.Image or np.ndarray).
keep_aspect_ratio (bool) – Whether to keep the aspect ratio.
- Returns:
The resized image with preserved aspect ratio.
- Return type:
Image.Image | np.ndarray[Any, np.dtype[np.uint8]]
Examples
>>> # Test with (height x width x channels) numpy array >>> import numpy as np >>> array: np.ndarray = np.random.randint(0, 255, (100, 50, 3), dtype=np.uint8) >>> image_resize(array, 100).size (50, 100) >>> image_resize(array, 100, min_or_max=max).size (50, 100) >>> image_resize(array, 100, min_or_max=min).size (100, 200)
>>> # Test with PIL Image >>> from PIL import Image >>> pil_image: Image.Image = Image.new('RGB', (200, 100)) >>> image_resize(pil_image, 50).size (50, 25) >>> # Test with different return types >>> resized_array = image_resize(array, 50, return_type=np.ndarray) >>> isinstance(resized_array, np.ndarray) True >>> resized_array.shape (50, 25, 3) >>> # Test with different resampling methods >>> image_resize(pil_image, 50, resampling=Image.Resampling.NEAREST).size (50, 25)